login
Number of lattice paths from {n}^8 to {0}^8 using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_8) we have abs(p_{i}-p_{i+1}) <= 1.
2

%I #5 Jul 19 2013 17:16:02

%S 1,40320,8201380224,1850957806329280,427196257460311066608,

%T 99184884676523895557447104,23066495371480810626495005438496,

%U 5366698074745901061777599023075846976,1248760044848501400078426452469652899962528,290576954131557518350262914717217159752148225600

%N Number of lattice paths from {n}^8 to {0}^8 using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_8) we have abs(p_{i}-p_{i+1}) <= 1.

%H Alois P. Heinz, <a href="/A227670/b227670.txt">Table of n, a(n) for n = 0..100</a>

%e a(1) = 8! = 40320.

%Y Column k=8 of A227655.

%Y Cf. A000142.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Jul 19 2013