The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227665 Number of lattice paths from {n}^3 to {0}^3 using steps that decrement one component by 1 such that for each point (p_1,p_2,p_3) we have abs(p_{i}-p_{i+1}) <= 1. 2
 1, 6, 44, 320, 2328, 16936, 123208, 896328, 6520712, 47437640, 345104904, 2510609608, 18264477064, 132872558664, 966636864776, 7032203170760, 51158695924872, 372175277815624, 2707544336559112, 19697160911545032, 143295215053933448, 1042460827200624200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (7,2). FORMULA G.f.: (x-1)/(2*x^2+7*x-1). a(n) = 7*a(n-1) + 2*a(n-2) for n>1, a(0)=1, a(2)=6. EXAMPLE a(1) = 3! = 3*2*1 = 6: .         (0,1,1) - (0,0,1) .       /         X         \ (1,1,1) - (1,0,1)   (0,1,0) - (0,0,0) .       \         X         / .         (1,1,0) - (1,0,0) MAPLE a:= n-> (<<0|1>, <2|7>>^n. <<1, 6>>)[1, 1]: seq(a(n), n=0..25); CROSSREFS Column k=3 of A227655. Cf. A000142. Sequence in context: A156002 A091163 A189800 * A102591 A114935 A115969 Adjacent sequences:  A227662 A227663 A227664 * A227666 A227667 A227668 KEYWORD nonn,easy AUTHOR Alois P. Heinz, Jul 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 22:52 EDT 2020. Contains 336335 sequences. (Running on oeis4.)