login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227573 Numerators of rationals with e.g.f. D(4,x), a Debye function. 3
1, -2, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The denominators are given in A227574.

For general remarks on the e.g.f.s D(n,x), the Debye function with index n = 1, 2, 3, ... see the W. Lang link under A120080.

D(4,x) := (4/x^4)*int(t^4/(exp(x) - 1), t=0..x) is the e.g.f. of the rationals r(4,n) = 4*B(n)/(n+4), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n).

See the Abramowitz-Stegun reference for the integral appearing in

  D(4,x) and a series expansion valid for |x| < 2*pi.

Essentially the same as A227570, A176327, A164555 and A027641. - R. J. Mathar, Jul 19 2013

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=4, with a factor (x^4)/4 extracted.

LINKS

Table of n, a(n) for n=0..40.

FORMULA

a(n) = numerator(4*B(n)/(n+4)), n >= 0,  with the Bernoulli numbers B(n).

EXAMPLE

The rationals r(4,n), n=0..15 are: 1, -2/5, 1/9, 0, -1/60, 0, 1/105, 0, -1/90, 0, 5/231, 0, -691/10920, 0, 7/27, 0.

CROSSREFS

Cf. A227574, A027641/A027642, A120086/A120087 (D(4,x) as o.g.f.).

Sequence in context: A120086 A215030 A175816 * A085004 A095774 A266874

Adjacent sequences:  A227570 A227571 A227572 * A227574 A227575 A227576

KEYWORD

sign,easy,frac

AUTHOR

Wolfdieter Lang, Jul 17 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 02:52 EDT 2019. Contains 328038 sequences. (Running on oeis4.)