This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227568 Largest k such that a partition of n into distinct parts with boundary size k exists. 3
 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The boundary size is the number of parts having fewer than two neighbors. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..2000 FORMULA a(n) = max { k : A227345(n,k) > 0 } = max { k : A227551(n,k) > 0 }. a(n) = floor(2*sqrt(n/3)). MAPLE b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, 1, 0),       `if`(i<1, 0, max(`if`(t>1, 1, 0)+b(n, i-1, iquo(t, 2)),       `if`(i>n, 0, `if`(t=2, 1, 0)+b(n-i, i-1, iquo(t, 2)+2)))))     end: a:= n-> b(n\$2, 0): seq(a(n), n=0..100); MATHEMATICA b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t > 1, 1, 0], If[i < 1, 0, Max[If[t > 1, 1, 0] + b[n, i - 1, Quotient[t, 2]], If[i > n, 0, If[t == 2, 1, 0] + b[n - i, i - 1, Quotient[t, 2] + 2]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 21 2018, translated from Maple *) CROSSREFS Where records occur: A077043. Cf. A227345, A227551. Sequence in context: A284263 A087233 A104147 * A232746 A052146 A097882 Adjacent sequences:  A227565 A227566 A227567 * A227569 A227570 A227571 KEYWORD nonn AUTHOR Alois P. Heinz, Jul 16 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 15:11 EDT 2019. Contains 328267 sequences. (Running on oeis4.)