The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227540 Denominator of the rationals obtained from the e.g.f. D(1,x), a Debye function. 1
 1, 4, 18, 1, 150, 1, 294, 1, 270, 1, 726, 1, 35490, 1, 90, 1, 8670, 1, 15162, 1, 6930, 1, 3174, 1, 68250, 1, 162, 1, 25230, 1, 443982, 1, 16830, 1, 210, 1, 71010030, 1, 234, 1, 554730, 1, 77658, 1, 31050, 1, 13254, 1, 2274090, 1, 3366, 1, 84270, 1, 43890, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The numerator sequence seems to be the one of the Bernoulli numbers A027641. D(1,x) := (1/x)*int(t/(exp(t)-1),t=0..x) which is (1/x)times the Debye function of the Abramowitz-Stegun link for n=1, is the e.g.f. for {B(k)/(k+1)}, k=0..infinity, with the Bernoulli numbers B(k) = A027641(k)/A027642(k). This follows after using the e.g.f. t/(exp(t)-1) of {B(k)} and integrating term by term (allowed for |x| <= r < rho for some small enough rho). LINKS M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=1, with an extra factor 1/x. FORMULA a(n) = denominator(B(n)/(n+1)) (in lowest terms), n >= 0. See the comment on the e.g.f. D(1,x) above. CROSSREFS Cf. A027641/A027642 (Bernoulli), A120082/A120083 for the rationals B(n)/(n+1)!. Sequence in context: A132554 A077275 A059903 * A246133 A205014 A204936 Adjacent sequences:  A227537 A227538 A227539 * A227541 A227542 A227543 KEYWORD nonn,easy,frac AUTHOR Wolfdieter Lang, Jul 15 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 18:52 EDT 2020. Contains 336256 sequences. (Running on oeis4.)