

A227520


Values of n such that L(17) and N(17) are both prime, where L(k) = (n^2+n+1)*2^(2*k) + (2*n+1)*2^k + 1, N(k) = (n^2+n+1)*2^k + n.


1



61, 73, 135, 141, 255, 321, 481, 767, 837, 1065, 1443, 1481, 1579, 1611, 1689, 1711, 1761, 1865, 1943, 2547, 2577, 2753, 2831, 2981, 3209, 3243, 3445, 3543, 3735, 3909, 4041, 4219, 4471, 4549, 4587, 4791, 4833, 4853, 4875, 4891, 5071, 5259, 5379, 5421, 5673, 5921, 5979, 6215, 6529, 6689, 6773, 6897, 6915, 6943
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Computed with PARI using commands similar to those used to compute A226921.


LINKS

Vincenzo Librandi and Joerg Arndt, Table of n, a(n) for n = 1..529
Eric L. F. Roettger, A cubic extension of the Lucas functions, Thesis, Dept. of Mathematics and Statistics, Univ. of Calgary, 2009. See page 195.


CROSSREFS

Cf. A226921A226929, A227448, A227449, A227515A227523.
Sequence in context: A139944 A179012 A227980 * A033236 A260808 A141457
Adjacent sequences: A227517 A227518 A227519 * A227521 A227522 A227523


KEYWORD

sign,easy


AUTHOR

Vincenzo Librandi, Jul 14 2013


STATUS

approved



