

A227518


Values of n such that L(15) and N(15) are both prime, where L(k) = (n^2+n+1)*2^(2*k) + (2*n+1)*2^k + 1, N(k) = (n^2+n+1)*2^k + n.


1



9, 25, 39, 105, 105, 107, 235, 313, 397, 415, 471, 639, 773, 885, 919, 957, 1053, 1115, 1151, 1279, 1325, 1327, 1377, 1563, 1641, 1703, 1811, 1851, 2007, 2023, 2441, 2501, 2553, 2621, 2681, 2685, 2691, 2937, 2943, 3047, 3491, 3493, 3603, 3677, 3733, 3965, 4083, 4317, 4623, 4737, 4805, 5043, 5063, 5481, 5757, 5805, 5947
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Computed with PARI using commands similar to those used to compute A226921.


LINKS

Vincenzo Librandi and Joerg Arndt, Table of n, a(n) for n = 1..1000
Eric L. F. Roettger, A cubic extension of the Lucas functions, Thesis, Dept. of Mathematics and Statistics, Univ. of Calgary, 2009. See page 195.


CROSSREFS

Cf. A226921A226929, A227448, A227449, A227515A227523.
Sequence in context: A241764 A044451 A114057 * A031036 A291259 A051132
Adjacent sequences: A227515 A227516 A227517 * A227519 A227520 A227521


KEYWORD

sign,easy


AUTHOR

Vincenzo Librandi, Jul 14 2013


STATUS

approved



