|
|
A227517
|
|
Values of n such that L(14) and N(14) are both prime, where L(k) = (n^2+n+1)*2^(2*k) + (2*n+1)*2^k + 1, N(k) = (n^2+n+1)*2^k + n.
|
|
1
|
|
|
199, -281, -359, 439, -1109, -1331, -1571, -1745, -1859, -2225, -2381, 2449, -2465, 3505, 3709, 4015, 4141, -4355, -5351, 5605, -5939, -6509, 6511, -7241, -7709, 7969, -8411, 8611, 9019, 10021, 10279, -10571, -10859, -12251, -13061, 13081, 14869, -15641, 15811, 16351, 16621, 16885, 17221, -17849, -18299, -18425, 18595, 19009, -19601, 19879
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Computed with PARI using commands similar to those used to compute A226921.
|
|
LINKS
|
Vincenzo Librandi and Joerg Arndt, Table of n, a(n) for n = 1..1000
Eric L. F. Roettger, A cubic extension of the Lucas functions, Thesis, Dept. of Mathematics and Statistics, Univ. of Calgary, 2009. See page 195.
|
|
CROSSREFS
|
Cf. A226921-A226929, A227448, A227449, A227515-A227523.
Sequence in context: A225575 A252667 A156840 * A142232 A166459 A304368
Adjacent sequences: A227514 A227515 A227516 * A227518 A227519 A227520
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
Vincenzo Librandi, Jul 14 2013
|
|
STATUS
|
approved
|
|
|
|