login
A227517
Values of n such that L(14) and N(14) are both prime, where L(k) = (n^2+n+1)*2^(2*k) + (2*n+1)*2^k + 1, N(k) = (n^2+n+1)*2^k + n.
1
199, -281, -359, 439, -1109, -1331, -1571, -1745, -1859, -2225, -2381, 2449, -2465, 3505, 3709, 4015, 4141, -4355, -5351, 5605, -5939, -6509, 6511, -7241, -7709, 7969, -8411, 8611, 9019, 10021, 10279, -10571, -10859, -12251, -13061, 13081, 14869, -15641, 15811, 16351, 16621, 16885, 17221, -17849, -18299, -18425, 18595, 19009, -19601, 19879
OFFSET
1,1
COMMENTS
Computed with PARI using commands similar to those used to compute A226921.
LINKS
Vincenzo Librandi and Joerg Arndt, Table of n, a(n) for n = 1..1000
Eric L. F. Roettger, A cubic extension of the Lucas functions, Thesis, Dept. of Mathematics and Statistics, Univ. of Calgary, 2009. See page 195.
KEYWORD
sign,easy
AUTHOR
Vincenzo Librandi, Jul 14 2013
STATUS
approved