login
A227515
Values of n such that L(12) and N(12) are both prime, where L(k) = (n^2+n+1)*2^(2*k) + (2*n+1)*2^k + 1, N(k) = (n^2+n+1)*2^k + n.
20
-119, 205, 271, 1267, -1319, -2873, 2935, -3029, 3133, -3257, 3547, 3745, -4193, 4291, 4555, -4907, -5789, -5927, 6223, -6347, -7217, 8167, -8447, 8587, 8845, 9961, 10411, 10897, 10903, -11429, -12467, 12637, -12983, -13013, -13907, 15643, -16445, 16615, 17971, 18097, 18361, -19859
OFFSET
1,1
COMMENTS
Computed with PARI using commands similar to those used to compute A226921.
LINKS
Vincenzo Librandi and Joerg Arndt, Table of n, a(n) for n = 1..1000
Eric L. F. Roettger, A cubic extension of the Lucas functions, Thesis, Dept. of Mathematics and Statistics, Univ. of Calgary, 2009. See page 195.
KEYWORD
sign,easy
AUTHOR
Vincenzo Librandi, Jul 14 2013
STATUS
approved