login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227500 a(0)=a(1)=0; for n>1, a(n) = numerator( r(n) ), where r(n) = r(n-1)+r(n-2)+A027641(n-2)/A027642(n-2) and r(0)=r(1)=a(0). 1
0, 0, 1, 1, 5, 13, 19, 179, 1028, 1103, 893, 2889, 15445, 249787, 24988, 8494711, 6888613, 7423979, 101535859, 329279361, 1187585188, 128951009, 2513033741, 25007430139, 599126628077, 591141383117, -3361274604, 1470023540617, 22712552603063, 322385807064733, -26340115994784101 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Reduced a(n)/c(n) = 0, 0, 1, 1/2, 5/3, 13/6, 19/5, 179/30, 1028/105, 1103/70, 893/35, 2889/70, 15445/231, 249787/2310,... .

After the first Bernoulli numbers we consider the same transform applied to the second Bernoulli numbers A164555(n)/A027642(n). Hence reduced b(n)/c(n) = 0, 0, 1, 3/2, 8/3, 25/6, 34/5, 329/30, 1868/105, 2013/70, 1628/35, 5269/70, 28150/231, 455377/2310, ....

Conjecture: (b(n)-a(n))/c(n) = 0, 0, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ..., that is two 0 followed by A000045.

This conjecture is confirmed up to 100 terms. [Jean-François Alcover, Jul 19 2013]

LINKS

Table of n, a(n) for n=0..30.

EXAMPLE

a(2)=1 because r(2)=r(1)+r(0)+A027641(0)/A027642(0)=0+0+1=1;

a(3)=1 because r(3)=r(2)+r(1)+A027641(1)/A027642(1)=1+0-1/2=1/2;

a(4)=5 because r(4)=r(3)+r(2)+A027641(2)/A027642(2)=1+1/2+1/6=5/3.

MATHEMATICA

b1[0] = b1[1] = 0; b1[n_] := b1[n] = b1[n - 1] + b1[n - 2] + BernoulliB[n - 2]; a[n_] := Numerator[b1[n]]; Table[a[n], {n, 0, 30}]  (* Jean-François Alcover, Jul 19 2013 *)

CROSSREFS

Sequence in context: A154634 A232655 A175866 * A265814 A087714 A055045

Adjacent sequences:  A227497 A227498 A227499 * A227501 A227502 A227503

KEYWORD

sign,frac

AUTHOR

Paul Curtz, Jul 13 2013

EXTENSIONS

More terms from Jean-François Alcover, Jul 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 23:39 EDT 2019. Contains 328211 sequences. (Running on oeis4.)