

A227410


Palindromic prime numbers representing a date in "condensed American notation" MMDDYY.


2



10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 30103, 30203, 30403, 30703, 30803, 31013, 31513, 32323, 32423, 70207, 70507, 70607, 71317, 71917, 72227, 72727, 73037, 90709, 91019
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For February, the number of days will be 28 only, as the year cannot be a leap year if MMDDYY is to be a prime number.
The sequence is finite, with 27 terms. The largest term is a(27)=91019.


LINKS

Table of n, a(n) for n=1..27.


EXAMPLE

a(1)=10301 is palindromic prime and represents a date in MMDDYY format as 010301.


MATHEMATICA

palindromicQ[n_] := TrueQ[IntegerDigits[n] == Reverse[IntegerDigits[n]]]; t = {}; Do[If[m < 8, If[OddQ[m], b = 31, If[m == 2, b = 28, b = 30]], If[OddQ[m], b = 30, b = 31]]; Do[a = 100 d + y + 10000 m; If[PrimeQ[a] && palindromicQ[a], AppendTo[t, a]], {d, 1, b}], {m, 1,
12}, {y, 1, 99}]; Union[t]


CROSSREFS

Cf. A213184, A227409, A227411.
Sequence in context: A241788 A187937 A154089 * A227411 A100502 A099746
Adjacent sequences: A227407 A227408 A227409 * A227411 A227412 A227413


KEYWORD

nonn,base,fini,full,less


AUTHOR

Shyam Sunder Gupta, Sep 22 2013


STATUS

approved



