This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227404 Total number of inversions in all permutations of order n consisting of a single cycle. 2

%I

%S 0,0,1,4,22,140,1020,8400,77280,786240,8769600,106444800,1397088000,

%T 19718899200,297859161600,4794806016000,81947593728000,

%U 1482030950400000,28277150533632000,567677135241216000,11961768206868480000

%N Total number of inversions in all permutations of order n consisting of a single cycle.

%C The formula trivially follows from the observation that every pair of elements i<j forms an inversion in exactly (binomial(n,2)-n+j-i)*(n-3)! single-cycle permutations. - _Max Alekseyev_, Jan 05 2018

%H Per Alexandersson, Linus Jordan, <a href="https://arxiv.org/abs/1805.09778">Enumeration of border-strip decompositions</a>, arXiv:1805.09778 [math.CO], 2018.

%F For n>2, a(n) = n! * (3*n-1)/12. - _Vaclav Kotesovec_, Feb 14 2014

%e a(3) = 4 because the cyclic 3-permutations: (1,2,3), (1,3,2) written in one line (sequence) notation: {2,3,1}, {3,1,2} have 2 + 2 = 4 inversions.

%t Table[Total[Map[Inversions,Map[FromCycles,Map[List, Map[Prepend[#,n]&, Permutations[n-1]]]]]],{n,1,8}]

%Y Cf. A001809, A211606, A216239.

%K nonn

%O 0,4

%A _Geoffrey Critzer_, Sep 21 2013

%E a(13)-a(15) from _Alois P. Heinz_, Sep 26 2013

%E Terms a(16) and beyond from _Max Alekseyev_, Jan 05 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 10:03 EDT 2019. Contains 324152 sequences. (Running on oeis4.)