login
A227376
G.f.: 1/(1 - x - x^2 - x^3 + x^5 + x^6 + x^7).
1
1, 1, 2, 4, 7, 12, 21, 36, 62, 106, 181, 309, 527, 898, 1530, 2606, 4438, 7557, 12867, 21907, 37297, 63497, 108100, 184032, 313298, 533359, 907988, 1545751, 2631469, 4479778, 7626309, 12982911, 22101900, 37625912, 64053725, 109043981, 185634620, 316021206, 537989084, 915863373
OFFSET
0,3
COMMENTS
Compare to sequence A227375, generated by a continued fraction.
Lim_{n->infinity} a(n)/a(n+1) = 0.587411973105598587998520092901249815195963...
FORMULA
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-5) - a(n-6) - a(n-7). - Wesley Ivan Hurt, May 22 2021
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 9*x^6 + 14*x^7 + 24*x^8 + ...
MATHEMATICA
CoefficientList[Series[1/(1-x-x^2-x^3+x^5+x^6+x^7), {x, 0, 50}], x] (* Harvey P. Dale, Mar 09 2021 *)
PROG
(PARI) {a(n)=polcoeff(1/(1 - x - x^2 - x^3 + x^5 + x^6 + x^7 +x*O(x^n)), n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
Cf. A227375.
Sequence in context: A094974 A306306 A357947 * A245531 A189593 A100671
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Jul 09 2013
STATUS
approved