login
A227276
Primes p for which p^2 + p - 1 = q*r (q<r) such that q, r, p^2 + q - 1 and p^2 + r - 1 are primes.
2
7, 17, 23, 61, 67, 71, 79, 151, 307, 311, 383, 389, 409, 439, 613, 677, 1559, 1627, 1637, 2377, 2719, 2801, 3407, 3821, 4229, 4799, 4919, 5557, 5641, 5743, 5779, 5851, 5867, 6133, 6733, 7121, 7723, 8009, 8527, 8573, 10163, 10729, 11317, 11789, 11987, 14107, 14629, 14653, 14669, 17189, 17401, 18077
OFFSET
1,1
LINKS
FORMULA
A226770(a^2(n) - 1) = 3.
MATHEMATICA
Select[Prime[Range[3000]], And@@PrimeQ[#1^2-1+First[#2]]&&Last[#2]=={1, 1}&[#1, Transpose[FactorInteger[#^2+#-1]]]&] (* Peter J. C. Moses, Jul 05 2013 *)
CROSSREFS
Sequence in context: A346656 A057183 A076293 * A300298 A273745 A263264
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Jul 04 2013
EXTENSIONS
More terms from Peter J. C. Moses.
STATUS
approved