login
A227270
Numbers n such that Sum_{i= 1..k} 1/d(i) + Product_{i= 1..k} 1/d(i) = 1, where d(i) are the k prime distinct divisors of n.
1
1, 2, 4, 6, 8, 12, 16, 18, 24, 32, 36, 42, 48, 54, 64, 72, 84, 96, 108, 126, 128, 144, 162, 168, 192, 216, 252, 256, 288, 294, 324, 336, 378, 384, 432, 486, 504, 512, 576, 588, 648, 672, 756, 768, 864, 882, 972, 1008, 1024, 1134, 1152, 1176, 1296, 1344, 1458
OFFSET
1,2
LINKS
EXAMPLE
42 is in the sequence because the prime divisors of 42 are 2, 3, 7 and 1/2 + 1/3 + 1/7 + 1/(2*3*7) = 1.
MAPLE
with(numtheory):for n from 1 to 5000 do: x:=factorset(n):n1:=nops(x): d:= sum('1/x[i] ', 'i'=1..n1) + product('1/x[j] ', 'j'=1..n1):if d=1 then printf(`%d, `, n):else fi:od:
MATHEMATICA
pdd1Q[n_]:=Module[{c=FactorInteger[n][[All, 1]]}, Total[1/c]+ 1/Times@@c ==1]; Join[{1}, Select[Range[1500], pdd1Q]] (* Harvey P. Dale, Aug 22 2016 *)
CROSSREFS
Sequence in context: A140067 A364157 A067946 * A145853 A318782 A064527
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Jul 04 2013
STATUS
approved