login
Number of n X 5 binary arrays indicating whether each 2 X 2 subblock of a larger binary array has lexicographically nondecreasing rows and columns, for some larger (n+1) X 6 binary array with rows and columns of the latter in lexicographically nondecreasing order.
1

%I #8 Sep 10 2023 21:01:11

%S 11,53,450,4578,44379,385212,2925969,19641271,118614860,654214381,

%T 3334753195,15858202072,70892618881,299805425605,1205758757487,

%U 4632388331446,17066069541973,60489294799563,206864212649513

%N Number of n X 5 binary arrays indicating whether each 2 X 2 subblock of a larger binary array has lexicographically nondecreasing rows and columns, for some larger (n+1) X 6 binary array with rows and columns of the latter in lexicographically nondecreasing order.

%C Column 5 of A227256.

%H R. H. Hardin, <a href="/A227255/b227255.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A227255/a227255.txt">Empirical polynomial of degree 47</a>

%F Empirical polynomial of degree 47 (see link above).

%e Some solutions for n=4

%e ..1..1..1..0..0....1..1..1..0..1....1..1..0..0..0....1..1..1..1..1

%e ..1..1..0..1..1....1..0..0..1..1....1..0..1..1..1....1..1..1..0..0

%e ..1..1..1..1..1....0..1..1..0..1....1..1..1..1..1....1..1..0..0..0

%e ..1..0..0..1..1....1..1..0..1..0....1..0..1..1..0....1..0..0..0..0

%Y Cf. A227256.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 04 2013