%I #8 Sep 10 2023 21:01:11
%S 11,53,450,4578,44379,385212,2925969,19641271,118614860,654214381,
%T 3334753195,15858202072,70892618881,299805425605,1205758757487,
%U 4632388331446,17066069541973,60489294799563,206864212649513
%N Number of n X 5 binary arrays indicating whether each 2 X 2 subblock of a larger binary array has lexicographically nondecreasing rows and columns, for some larger (n+1) X 6 binary array with rows and columns of the latter in lexicographically nondecreasing order.
%C Column 5 of A227256.
%H R. H. Hardin, <a href="/A227255/b227255.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A227255/a227255.txt">Empirical polynomial of degree 47</a>
%F Empirical polynomial of degree 47 (see link above).
%e Some solutions for n=4
%e ..1..1..1..0..0....1..1..1..0..1....1..1..0..0..0....1..1..1..1..1
%e ..1..1..0..1..1....1..0..0..1..1....1..0..1..1..1....1..1..1..0..0
%e ..1..1..1..1..1....0..1..1..0..1....1..1..1..1..1....1..1..0..0..0
%e ..1..0..0..1..1....1..1..0..1..0....1..0..1..1..0....1..0..0..0..0
%Y Cf. A227256.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jul 04 2013