This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227233 The continued fraction of the constant r > sqrt(3) such that the partial quotients equal the integer floor of the powers of r. 1
 1, 1, 3, 5, 9, 16, 29, 52, 92, 163, 287, 507, 893, 1573, 2772, 4884, 8605, 15159, 26705, 47045, 82878, 146003, 257207, 453112, 798230, 1406210, 2477265, 4364097, 7688055, 13543737, 23859456, 42032242, 74046506, 130444746, 229799252, 404828081, 713169314, 1256361635, 2213281654 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS EXAMPLE This constant r, found in the interval (sqrt(3), 2), satisfies the continued fraction: r = [1; [r], [r^2], [r^3], [r^4], ..., floor(r^n), ...], more explicitly: r = [1; 1, 3, 5, 9, 16, 29, 52, 92, 163, 287, 507, 893, 1573, ...] where r = 1.7616596940944800771133433079549530812923042547055232047896... See A227232 for another constant that satisfies a continued fraction of the same construction but is found in the interval (1, sqrt(3)). PROG (PARI) {a(n)=local(r=sqrt(3)+1/10^4); for(i=1, 10, M=contfracpnqn(vector(2*n+2, k, floor(r^(k-1)))); r=M[1, 1]/M[2, 1]*1.); floor(r^n)} for(n=0, 40, print1(a(n), ", ")) CROSSREFS Cf. A227232. Sequence in context: A094980 A295060 A069818 * A054180 A188223 A135575 Adjacent sequences:  A227230 A227231 A227232 * A227234 A227235 A227236 KEYWORD nonn,cofr AUTHOR Paul D. Hanna, Jul 03 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 08:13 EDT 2019. Contains 327214 sequences. (Running on oeis4.)