%I #21 May 04 2024 11:58:00
%S 6,66,666,8146666,2340066666,109704666666,15212926666666,
%T 66488766666666,173147535666666666,11302559226666666666,
%U 14642337066666666666,77850029701666666666666,1029964845546666666666666,3086210323568466666666666666,4014564887872666666666666666
%N Smallest triangular number ending in n 6's.
%C If a triangular number ends in like digits then it can only end in 0's, 1's, 5's or 6's.
%H Robert Israel, <a href="/A227220/b227220.txt">Table of n, a(n) for n = 1..500</a>
%e a(4)=8146666 because 8146666 is the smallest triangular number ending in 4 '6's.
%p f:= proc(n) local k;
%p k:=min(map(rhs@op, [msolve(k*(k+1)=4/3*(10^n-1),2*10^n)]));
%p k*(k+1)/2
%p end proc:
%p map(f, [$1..30]); # _Robert Israel_, Sep 04 2019
%t t = {}; Do[Do[x = n*(n + 1)/2;If[Mod[x, 10^m] == 6*(10^m - 1)/9, AppendTo[t, x]; Break[]], {n, 1, 10^m}], {m, 1, 10}]; t
%t a[n_] := Block[{x,y,s}, s = y /. List@ ToRules[ Reduce[(y+1)* y/2 == x*10^n + 2(10^n - 1)/3 && y > 0 && x >= 0, {y, x}, Integers] /. C[1] -> 0]; Min[s*(s + 1)/2]]; Array[a,20] (* _Giovanni Resta_, Sep 20 2013 *)
%o (Python)
%o from sympy import sqrt_mod_iter
%o def A227220(n):
%o k, a = 10**n<<1, (10**n-1)//3<<2
%o m = (a<<2)+1
%o return min(b for b in ((d>>1)*((d>>1)+1) for d in sqrt_mod_iter(m, k) if d&1) if b%k==a)>>1 # _Chai Wah Wu_, May 04 2024
%Y Cf. A000217, A187127, A227218, A227219.
%K nonn,base
%O 1,1
%A _Shyam Sunder Gupta_, Sep 19 2013
%E a(11)-a(15) from _Giovanni Resta_, Sep 20 2013