login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227216 Expansion of f(-q^2, -q^3)^5 / f(-q)^3 in powers of q where f() is a Ramanujan theta function. 37

%I #37 Sep 08 2022 08:46:05

%S 1,3,4,2,1,3,6,4,0,-1,4,6,4,2,2,2,3,4,2,0,1,6,8,2,0,3,6,0,-2,0,6,6,4,

%T 4,2,4,3,4,0,-2,0,6,8,2,2,-1,6,4,2,1,4,6,4,2,0,6,0,0,0,0,4,6,8,2,1,2,

%U 12,4,-2,-2,2,6,0,2,2,2,0,8,4,0,3,3,8,2

%N Expansion of f(-q^2, -q^3)^5 / f(-q)^3 in powers of q where f() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Zagier (2009) refers to Case D corresponding to the Apery numbers (A005258).

%D D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

%H Seiichi Manyama, <a href="/A227216/b227216.txt">Table of n, a(n) for n = 0..10000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%H D. Zagier, <a href="http://people.mpim-bonn.mpg.de/zagier/files/tex/AperylikeRecEqs/fulltext.pdf">Integral solutions of Apery-like recurrence equations</a>.

%F Expansion of f(-q)^2 * (f(-q^5) / f(-q, -q^4))^5 = f(-q^2, -q^3)^2 * (f(-q^5) / f(-q, -q^4))^3 in powers of q where f() is a Ramanujan theta function.

%F Euler transform of period 5 sequence [ 3, -2, -2, 3, -2, ...].

%F Moebius transform is period 5 sequence [ 3, 1, -1, -3, 0, ...]. - _Michael Somos_, Jun 10 2014

%F G.f. = g(t(q)) where g(), t() are the g.f. for A005258 and A078905.

%F G.f.: (Product_{k>0} (1 - x^k)^2) / (Product_{k>0} (1 - x^(5*k - 1)) * (1 - x^(5*k - 4)))^5.

%e G.f. = 1 + 3*q + 4*q^2 + 2*q^3 + q^4 + 3*q^5 + 6*q^6 + 4*q^7 - q^9 + ...

%t a[ n_] := If[ n < 1, Boole[ n == 0], Sum[ Re[(3 - I) {1, I, -I, -1, 0}[[ Mod[ d, 5, 1] ]] ], {d, Divisors @ n}]];

%t a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 / (QPochhammer[ q, q^5] QPochhammer[ q^4, q^5])^5, {q, 0, n}]; (* _Michael Somos_, Jun 10 2014 *)

%o (PARI) {a(n) = if( n<1, n==0, sumdiv(n, d, real( (3 - I) * [ 0, 1, I, -I, -1][ d%5 + 1])))};

%o (PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^[ 2, -3, 2, 2, -3][k%5 + 1], 1 + x * O(x^n)), n))};

%o (Sage) A = ModularForms( Gamma1(5), 1, prec=20) . basis(); A[0] + 3*A[1]; # _Michael Somos_, Jun 10 2014

%o (Magma) A := Basis( ModularForms( Gamma1(5), 1), 20); A[1] + 3*A[2]; /* _Michael Somos_, Jun 10 2014 */

%Y Cf. A005258, A078905, A229802.

%Y The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

%K sign

%O 0,2

%A _Michael Somos_, Sep 21 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 14:15 EDT 2024. Contains 371914 sequences. (Running on oeis4.)