The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227176 E.g.f.: LambertW(LambertW(-x)) / LambertW(-x). 5
 1, 1, 5, 43, 525, 8321, 162463, 3774513, 101808185, 3129525793, 108063152091, 4143297446729, 174723134310277, 8039591465487297, 400924930695585143, 21543513647508536161, 1241094846565489688817, 76314967969651411780673, 4989260143610128556354611 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..100 FORMULA a(n) = Sum_{k=0..n} binomial(n,k) * k*(k+1)^(k-1) * n^(n-k-1) for n>0 with a(0)=1. E.g.f. A(x) satisfies: (1) A(x) = W(x*W(x)), where W(x) = LambertW(-x)/(-x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!. (2) A(x) = exp( T(T(x)) ), where T(x) = -LambertW(-x) is Euler's tree function (A000169). (3) A(x) = exp( -A(x)*LambertW(-x) ). (4) A(x) = ( LambertW(-x)/(-x) )^A(x). (5) A(x) = ( Sum_{n>=0} (n+1)^(n-1)*x^n/n! )^A(x). (6) A(x) = Sum_{n>=0} A(x)*(n + A(x))^(n-1) * x^n/n!. (7) A(x)^m = Sum_{n>=0} m*A(x)*(n + m*A(x))^(n-1) * x^n/n!. (8) A(x/exp(x)) = exp(T(x)) = LambertW(-x)/(-x). (9) log(A(x)) = A(x) * Sum_{n>=1} n^(n-1) * x^n/n!, and equals the e.g.f. of A207833. (10) A(x) = 1 + Sum_{n>=1} (n+1)^(n-1)*x^n/n! * Sum_{k>=0} n*(k+n)^(k-1)*x^k/k!. a(n) ~ n! * (-exp((1+exp(-1))*n)/(sqrt(2*Pi*(1-exp(-1)))*n^(3/2) *LambertW(-exp(-1-exp(-1))))). - Vaclav Kotesovec, Jul 05 2013 EXAMPLE E.g.f.: A(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 525*x^4/4! + 8321*x^5/5! +... Define W(x) = LambertW(-x)/(-x), where W(x) = exp(x*W(x)) and begins: W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! +... then (1) A(x) = W(x*W(x)), (4) A(x) = W(x)^A(x), (3) A(x) = exp( x*A(x)*W(x) ), (8) A(x/exp(x)) = W(x). The e.g.f. also satisfies: (6) A(x) = 1 + A(x)*x + A(x)*(2 + A(x))*x^2/2! + A(x)*(3 + A(x))^2*x^3/3! + A(x)*(4 + A(x))^3*x^4/4! + A(x)*(5 + A(x))^4*x^5/5! +... and, for all real m, (7) A(x)^m = 1 + m*A(x)*(1+m*A(x))^0*x^1/1! + m*A(x)*(2+m*A(x))^1*x^2/2! + m*A(x)*(3+m*A(x))^2*x^3/3! + m*A(x)*(4+m*A(x))^3*x^4/4! + m*A(x)*(5+m*A(x))^4*x^5/5! +... MATHEMATICA CoefficientList[Series[LambertW[LambertW[-x]]/LambertW[-x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 05 2013 *) PROG (PARI) {a(n) = if(n==0, 1, sum(k=0, n, binomial(n, k)*k*(k+1)^(k-1)*n^(n-k-1)))} for(n=0, 20, print1(a(n), ", ")) (PARI) /* E.g.f.: A(x) = W(x*W(x)) */ {a(n)=local(W=sum(k=0, n, (k+1)^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(subst(W, x, x*W), n)} (PARI) /* E.g.f.: A(x) = exp(T(T(x)) ) */ {a(n)=local(T=sum(k=1, n, k^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(exp(subst(T, x, T)), n)} (PARI) /* E.g.f.: A(x) = exp( -A(x)*LambertW(-x) ) */ {a(n)=local(A=1+x, LambertW=sum(k=1, n, -k^(k-1)*(-x)^k/k!)+x*O(x^n)); for(i=1, n, A=exp(-A*subst(LambertW, x, -x) +x*O(x^n))); n!*polcoeff(A, n)} (PARI) /* E.g.f.: A(x) = ( LambertW(-x)/(-x) )^A(x) */ {a(n)=local(A=1+x, W=sum(k=0, n, (k+1)^(k-1)*x^k/k!)+x*O(x^n)); for(i=1, n, A=W^A); n!*polcoeff(A, n)} (PARI) /* E.g.f.: A(x) = Sum_{n>=0} A(x)*(n + A(x))^(n-1) * x^n/n!. */ {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, A*(k+A)^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(A, n)} CROSSREFS Cf. A207833, A195203, A000169. Sequence in context: A107720 A299425 A060053 * A132691 A256033 A251568 Adjacent sequences:  A227173 A227174 A227175 * A227177 A227178 A227179 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 04 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 00:33 EST 2020. Contains 338920 sequences. (Running on oeis4.)