login
A227175
Expansion of (phi(x) / f(-x^4))^4 in powers of x where phi(), f() are Ramanujan theta functions.
1
1, 8, 24, 32, 28, 80, 192, 192, 134, 408, 864, 800, 568, 1520, 3072, 2752, 1809, 4808, 9456, 8192, 5316, 13616, 26112, 22144, 13990, 35376, 66624, 55584, 34696, 86016, 159744, 131392, 80724, 198256, 363720, 295776, 180068, 436816, 793344, 638976, 384940
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(2/3) * (eta(q^2)^5 / (eta(q)^2 * eta(q^4)^3))^4 in powers of q.
Euler transform of period 4 sequence [ 8, -12, 8, 0, ...].
a(2*n + 1) = 8 * A022569(n). Convolution square of A227033.
EXAMPLE
1 + 8*x + 24*x^2 + 32*x^3 + 28*x^4 + 80*x^5 + 192*x^6 + 192*x^7 + 134*x^8 + ...
q^-2 + 8*q + 24*q^4 + 32*q^7 + 28*q^10 + 80*q^13 + 192*q^16 + 192*q^19 + ...
MATHEMATICA
a[ n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]/QPochhammer[q^4])^4, {q, 0, n}];
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^3))^4, n))}
CROSSREFS
Sequence in context: A096727 A028660 A028644 * A340930 A269420 A056196
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 03 2013
STATUS
approved