login
A227169
a(n) = 3*((2*n+2)!)^2 / (n!*(n+1)!*(n+2)!*(n+3)!).
1
1, 6, 45, 392, 3780, 39204, 429429, 4907760, 58023108, 705264040, 8772399636, 111263122656, 1434941066000, 18775651948200, 248797110637125, 3333772874210400, 45115597383228900, 615974564891763000, 8477309210264363700, 117511846058893572000
OFFSET
0,2
FORMULA
In Maple notation,
ogf(z) = 3/(4*z^2) +(1/12288)*(-98304*z^2-2048*z+512)*EllipticK(4*sqrt(z))/(z^3*Pi) +(1/12288)*(-20480*z-512)*EllipticE(4*sqrt(z))/(z^3*Pi);
egf(z)=hypergeom([3/2, 3/2, 2], [1, 3, 4], 16*z), a 3F3 hypergeometric function.
Integral representation as the n-th moment of a signed function w(x) of bounded variation, 0<=x<=16: a(n) = Integral_{x=0..16}x^n*w(x), n>=0, where w(x) is the Meijer G function, w(x) = -3*MeijerG([[0], [2, 3]], [[1/2, 1/2], [1]], (1/16)*x)/Pi, satisfying w(16)=w(0)=0, w(x)<0 for x < 0.47.
The above Meijer G function cannot be represented by any other special function.
(n+3)*(n+2)*a(n) -18*(n+1)^2*a(n-1) +8*(2*n-1)^2*a(n-2)=0. - R. J. Mathar, Jul 14 2013
a(n) = 3*A135389(n)/((n+2)*(n+3)) = 3*A145600(n+1)/(n+3). - R. J. Mathar, Jul 14 2013
MAPLE
seq(3*((2*n+2)!)^2/(n!*(n+1)!*(n+2)!*(n+3)!), n=0..15);
MATHEMATICA
Table[3*((2*n + 2)!)^2/(n!*(n + 1)!*(n + 2)!*(n + 3)!), {n, 0, 20}] (* T. D. Noe, Jul 12 2013 *)
PROG
(Sage)
def a(n): return 3*(n+1)*(n+2)^2*(n+3)^3*gamma(2*n+3)^2/gamma(n+4)^4
[a(n) for n in (0..16)] # Peter Luschny, Jul 12 2013
CROSSREFS
Sequence in context: A101600 A233668 A243694 * A365184 A135148 A137974
KEYWORD
nonn
AUTHOR
Karol A. Penson, Jul 12 2013
STATUS
approved