login
A227146
Numbers that are congruent to {5, 11, 13, 14, 19} modulo 24.
4
5, 11, 13, 14, 19, 29, 35, 37, 38, 43, 53, 59, 61, 62, 67, 77, 83, 85, 86, 91, 101, 107, 109, 110, 115, 125, 131, 133, 134, 139, 149, 155, 157, 158, 163, 173, 179, 181, 182, 187, 197, 203, 205, 206, 211, 221, 227, 229, 230, 235, 245, 251, 253, 254, 259, 269
OFFSET
1,1
COMMENTS
A089911(a(n)) = 5.
FORMULA
G.f.: x*(1+x)*(5*x^4+x^2+x+5) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Jul 17 2013
From Wesley Ivan Hurt, Dec 28 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
a(n) = (120*n - 50 - (n mod 5) + 19*((n+1) mod 5) + 14*((n+2) mod 5) - 6*((n+3) mod 5) - 26*((n+4) mod 5))/25. (End)
MATHEMATICA
Select[Range[300], MemberQ[{5, 11, 13, 14, 19}, Mod[#, 24]]&] (* or *) LinearRecurrence[{1, 0, 0, 0, 1, -1}, {5, 11, 13, 14, 19, 29}, 60] (* Harvey P. Dale, Apr 30 2018 *)
PROG
(Haskell)
a227146 n = a227146_list !! (n-1)
a227146_list = [5, 11, 13, 14, 19] ++ map (+ 24) a227146_list
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jul 05 2013
STATUS
approved