login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX5 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X6 binary array having a sum of zero, with rows and columns of the latter in lexicographically nondecreasing order
1

%I #5 Aug 11 2014 22:45:52

%S 6,40,202,1079,5820,30620,153955,732611,3296920,14061299,56985160,

%T 220076717,812449972,2875724911,9787354849,32113565709,101824379739,

%U 312674532585,931663492446,2698483534259,7609773537119,20924215257349

%N Number of nX5 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X6 binary array having a sum of zero, with rows and columns of the latter in lexicographically nondecreasing order

%C Column 5 of A227125

%H R. H. Hardin, <a href="/A227124/b227124.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A227124/a227124.txt">Empirical polynomial of degree 39</a>

%F Empirical polynomial of degree 39 (see link above)

%e Some solutions for n=4

%e ..1..1..1..1..0....1..0..0..0..0....1..1..0..0..0....0..0..0..0..0

%e ..1..1..1..1..0....1..0..0..0..1....1..0..0..0..0....0..1..1..1..1

%e ..1..0..0..0..0....1..0..0..0..0....1..0..0..1..1....0..1..1..1..1

%e ..0..0..0..0..0....0..0..0..0..0....1..0..0..0..0....0..1..1..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Jul 01 2013