%I #26 Jul 10 2022 11:36:31
%S 11,16,21,26,31,41,46,51,56,61,66,76,81,86,91,96,111,116,121,126,146,
%T 151,156,181,186,221,226,231,236,241,246,256,261,266,271,276,291,296,
%U 301,306,326,331,336,361,366,396,436,441,446,451,456,471,476,481,486
%N Numbers whose base-6 sum of digits is 6.
%C Subsequence of A016861. - _Michel Marcus_, Sep 03 2013
%C In general, the set of numbers with sum of base-b digits equal to b is a subset of { (b-1)*k + 1; k = 2, 3, 4, ... }. - _M. F. Hasler_, Dec 23 2016
%H Michael S. Branicky, <a href="/A227080/b227080.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale)
%e The 6-ary expansion of 11 is (1,5), which has sum of digits 6.
%e The 6-ary expansion of 46 is (1,1,4), which has sum of digits 6.
%e 9 is not on the list since the 6-ary expansion of 10 is (1,3), which has sum of digits 4 not 6.
%t Select[Range[500],Total[IntegerDigits[#,6]]==6&] (* _Harvey P. Dale_, Nov 25 2016 *)
%o (Sage) [i for i in [0..1000] if sum(Integer(i).digits(base=6))==6]
%o (PARI) select( is(n)=sumdigits(n,6)==6, [1..999]) \\ _M. F. Hasler_, Dec 23 2016
%o (Python) # see A052224 for a faster version if going to high numbers
%o from sympy.ntheory import digits
%o def ok(n): return sum(digits(n, 6)[1:]) == 6
%o print([k for k in range(487) if ok(k)]) # _Michael S. Branicky_, Nov 16 2021
%o (Python)
%o agen = A226636gen(sod=6, base=6) # generator of terms using code in A226636
%o print([next(agen) for n in range(1, 56)]) # _Michael S. Branicky_, Jul 10 2022
%Y Cf. A018900, A187813.
%Y Cf. A226636 (b = 3), A226639 (b = 4), A227062 (b = 5), A227080 (b = 6), A227092 (b = 7), A227095 (b = 8), A227238 (b = 9), A052224 (b = 10).
%K nonn,base
%O 1,1
%A _Tom Edgar_, Sep 01 2013