login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227078 The Ramanujan-Nagell squares: A038198(n)^2. 7
1, 9, 25, 121, 32761 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = (2*x - 1)^2 = (sqrt(2)*sqrt(sqrt(6*y^2 - 5) + 1) - 1)^2 = 2^(z + 3) - 7 for x, y, z are the solutions to two Diophantine equations noted by R. K. Guy: 2*x^2*(x^2 - 1) = 3*(y^2 - 1) & x*(x - 1)/2 = 2^z - 1 (see A180445). x = (1, 2, 3, 6, 91} = A180445(n), y = (1, 3, 7, 29, 6761} = A227078(n), and z = {0, 1, 2, 4, 12} = A215795(n).

REFERENCES

J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 181, p. 56, Ellipses, Paris 2008.

L. J. Mordell, Diophantine Equations, Academic Press, NY, 1969, p. 205.

LINKS

Table of n, a(n) for n=0..4.

Curtis Bright, Solving Ramanujan's Square Equation Computationally

Eric Weisstein's World of Mathematics, Ramanujan's Square Equation

FORMULA

a(n) + 7 = 2^A060728(n).

(a(n) - 1)/8 = A076046(n).

CROSSREFS

Cf. A060728, A076046, A180445, A227078, A215795.

Sequence in context: A092769 A263951 A139818 * A146365 A146373 A084605

Adjacent sequences:  A227075 A227076 A227077 * A227079 A227080 A227081

KEYWORD

nonn,fini,full

AUTHOR

Raphie Frank, Jun 30 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 19:43 EDT 2019. Contains 324155 sequences. (Running on oeis4.)