login
A227060
T(n,k)=Number of nXk -2..2 arrays of 2X2 subblock diagonal sums minus antidiagonal sums for some (n+1)X(k+1) binary array with rows and columns of the latter in lexicographically nondecreasing order
6
4, 10, 10, 20, 40, 20, 35, 124, 124, 35, 56, 329, 643, 329, 56, 84, 777, 2934, 2934, 777, 84, 120, 1673, 11810, 24511, 11810, 1673, 120, 165, 3341, 42295, 183000, 183000, 42295, 3341, 165, 220, 6269, 136553, 1202223, 2625106, 1202223, 136553, 6269, 220
OFFSET
1,1
COMMENTS
Table starts
...4....10......20........35..........56............84..............120
..10....40.....124.......329.........777..........1673.............3341
..20...124.....643......2934.......11810.........42295...........136553
..35...329....2934.....24511......183000.......1202223..........6979049
..56...777...11810....183000.....2625106......33345171........371484306
..84..1673...42295...1202223....33345171.....836488605......18470742252
.120..3341..136553...6979049...371484306...18470742252.....818230288186
.165..6269..402898..36211854..3651371505..358194085953...31887670171357
.220.11164.1099681.170079551.32017940207.6148026957082.1096628939510030
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = (1/6)*n^3 + 1*n^2 + (11/6)*n + 1
k=2: [polynomial of degree 7]
k=3: [polynomial of degree 15]
EXAMPLE
Some solutions for n=3 k=4
..0..1..0.-1....0..1.-2..0....0..0..1.-2....1.-2..0..1....0..1..0..0
..0.-2..0..0....0.-2..1..1....0..1.-2..2....0..0..1.-1....1.-2..1..0
..0..0..1.-1....0..1..0.-1....0..0..1.-1...-1..1.-1..0...-2..1.-1..1
CROSSREFS
Column 1 is A000292(n+1)
Sequence in context: A310335 A352753 A310336 * A278727 A184129 A202581
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jun 30 2013
STATUS
approved