The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227037 Partial sums of A013999. 1
 1, 2, 4, 12, 54, 312, 2136, 16800, 149160, 1475280, 16081920, 191530080, 2473999920, 34446303360, 514240110720, 8193624284160, 138780284791680, 2489891543596800, 47169750454848000, 940914453958617600, 19712190644360121600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = sum(A013999(k), k=0..n). a(n) = sum(sum(C(j-k+1,k)*(-1)^k*(j-k+1)!, k=0..floor((j+1)/2)), j=0..n). Recurrence: a(n+4) -(n+8)*a(n+3) +(3*n+16)*a(n+2) -(3*n+13)*a(n+1) +(n+4)*a(n) = 0. G.f.: Sum_{k>=0} (k+1)!*(x-x^2)^k. a(n) = (n+3)*a(n-1)-2*(n+1)*a(n-2)+(n+1)*a(n-3) for n>2, a(n) = 2^n for n<=2. - Alois P. Heinz, Jul 01 2013 a(n) ~ n!*n/exp(1). - Vaclav Kotesovec, Jul 06 2013 MAPLE a:= proc(n) option remember; `if`(n<3, 2^n,       (n+3)*a(n-1) -2*(n+1)*a(n-2) +(n+1)*a(n-3))     end: seq(a(n), n=0..30);  # Alois P. Heinz, Jul 01 2013 MATHEMATICA Table[Sum[Sum[Binomial[j-k+1, k]*(-1)^k*(j-k+1)!, {k, 0, Floor[(j+1)/2]}], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 06 2013 *) PROG (Maxima) makelist(sum(sum(binomial(j-k+1, k)*(-1)^k*(j-k+1)!, k, 0, floor((j+1)/2)), j, 0, n), n, 0, 20); CROSSREFS Cf. A013999. Sequence in context: A058767 A075876 A222470 * A158569 A020106 A099928 Adjacent sequences:  A227034 A227035 A227036 * A227038 A227039 A227040 KEYWORD nonn AUTHOR Emanuele Munarini, Jul 01 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 08:39 EDT 2020. Contains 337442 sequences. (Running on oeis4.)