login
Composite numbers such that product_{i=1..k} (p_i/(p_i-1)) / sum_{i=1..k} (p_i/(p_i-1)) is an integer, where p_i are the k prime factors of n (with multiplicity).
5

%I #6 Jul 04 2013 14:33:02

%S 4,16,72,132,256,800,1232,2208,2960,5184,5376,11904,19200,23760,39040,

%T 41472,65536,72000,76032,76800,84816,203280,259200,288768,332928,

%U 345600,373248,383040,416000,614400,628992,640000,663552,691200,1228800,1996800,2013312

%N Composite numbers such that product_{i=1..k} (p_i/(p_i-1)) / sum_{i=1..k} (p_i/(p_i-1)) is an integer, where p_i are the k prime factors of n (with multiplicity).

%C All terms are even numbers.

%H Paolo P. Lava, <a href="/A227034/b227034.txt">Table of n, a(n) for n = 1..100</a>

%e Prime factors of 1232 are 2^4, 7, 11 and ((2/(2-1))^4*7/(7-1)*11/(11-1)) / (4*2/(2-1)+7/(7-1)+11/(11-1)) = 2.

%p with(numtheory); ListA226365:=proc(q) local a, d, n, p;

%p for n from 2 to q do if not isprime(n) then p:=ifactors(n)[2];

%p a:=mul((op(1,d)/(op(1,d)-1))^op(2,d),d=p)/add((op(1,d)/(op(1,d)-1))*op(2,d),d=p);

%p if type(a,integer) then print(n); fi; fi;

%p od; end: ListA226365(10^10);

%Y Cf. A224346, A224912, A226365, A227248.

%K nonn

%O 1,1

%A _Paolo P. Lava_, Jul 03 2013