login
A227033
Expansion of (phi(x) / f(-x^4))^2 in powers of x where phi(), f() are Ramanujan theta functions.
2
1, 4, 4, 0, 6, 16, 8, 0, 17, 40, 28, 0, 38, 96, 56, 0, 84, 204, 124, 0, 172, 400, 232, 0, 325, 760, 448, 0, 594, 1376, 784, 0, 1049, 2404, 1388, 0, 1796, 4096, 2320, 0, 3005, 6808, 3864, 0, 4912, 11072, 6216, 0, 7877, 17688, 9940, 0, 12430, 27792, 15488, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500 (terms 0..55 from Michael Somos)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/3) * (eta(q^2)^5 / (eta(q)^2 * eta(q^4)^3))^2 in powers of q.
Euler transform of period 4 sequence [4, -6, 4, 0, ...].
a(4*n + 3) = 0. a(2*n) = A112160(n). a(4*n + 1) = 4 * A022569(n).
EXAMPLE
G.f. = 1 + 4*x + 4*x^2 + 6*x^4 + 16*x^5 + 8*x^6 + 17*x^8 + 40*x^9 + 28*x^10 + ...
G.f. = 1/q + 4*q^2 + 4*q^5 + 6*q^11 + 16*q^14 + 8*q^17 + 17*q^23 + 40*q^26 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x] / QPochhammer[ x^4])^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^3))^2, n))};
CROSSREFS
Sequence in context: A169783 A133657 A121455 * A285050 A262949 A200519
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 03 2013
STATUS
approved