login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227014 Floor(M(g(n-1)+1,..,g(n))), where M = harmonic mean and g(n) = n^5. 2
1, 10, 104, 543, 1883, 5102, 11717, 23906, 44626, 77735, 128110, 201769, 305989, 449428, 642243, 896212, 1224852, 1643541, 2169636, 2822595, 3624095, 4598154, 5771249, 7172438, 8833478, 10788947, 13076362, 15736301, 18812521, 22352080 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A227012.  It is conjectured that A227014 is a linear recurrence sequence with signature (5,-10,10,-5,1,...Z...,1,-5,-10,-10,-1,0,0), where ...Z... represents a string of 138 zeros; has been confirmed for a(1), a(2),..., a(150000).

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000

EXAMPLE

a(1) = floor(1/(1/1)) = 1, a(2) = floor(31/(1/2 + 1/3 + ... + 1/32) = 10.

MATHEMATICA

Clear[g]; g[n_] := N[n^5, 100]; a = {1}; Do[AppendTo[a, Floor[(#2 - #1 + 1)/(HarmonicNumber[#2]-HarmonicNumber[#1 - 1])] &[g[k - 1] + 1, g[k]]], {k, 2, 200}]; a (* Peter J. C. Moses, Jul 05 2012 *)

(* confirm generating function *)

p = {1, -4, 5, 9, 54, 117, 117, 122, 118, 122, 118, 122, 118, 122,

   118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118,

   122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122,

   118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118,

   122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122,

   119, 117, 129, 107, 134, 106, 134, 106, 134, 106, 134, 106, 134,

   106, 134, 106, 134, 107, 129, 117, 119, 122, 118, 122, 118, 122,

   118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118,

   122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122,

   118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118,

   122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122, 118, 122,

   117, 126, 113, 113, 64, 5, 1};

q = {0, 0, 1, -5, 10, -10, 5, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 5, -10, 10, -5,

    1}; gf = Fold[x #1 + #2 &, 0, p]/Fold[x #1 + #2 &, 0, q]; CoefficientList[Series[Factor[gf], {x, 0, 100}], x] (* Peter J. C. Moses, Jul 08 2012 *)

CROSSREFS

Cf. A227012, A227013.

Sequence in context: A015588 A162667 A027270 * A036334 A190954 A163309

Adjacent sequences:  A227011 A227012 A227013 * A227015 A227016 A227017

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Jul 01 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 02:54 EDT 2019. Contains 323597 sequences. (Running on oeis4.)