OFFSET
1,2
COMMENTS
See A227012.
FORMULA
a(n) = 47/9 + 14*n + (41*n^2)/3 + 6*n^3 + n^4 - (2/9)Cos(2*n*pi/3) (conjectured).
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 5*a(n-4) + 6*a(n-5) - 4*a(n-6) + a(n-7) for n > 2 (conjectured).
G.f.: (-1 - 2*x - 22*x^2 - 23*x^3 - 20*x^4 - 4*x^5 + 2*x^6 - 3*x^7 + x^8)/((-1 + x)^5 (1 + x + x^2)) (conjectured).
EXAMPLE
a(1) = floor(1/(1/1)) = 1.
a(2) = floor(15/(1/2 + 1/3 + ... + 1/16)) = 6.
MATHEMATICA
z = 30; f[x_] := f[x] = 1/x; g[n_] := g[n] = n^4; s[n_] := s[n] = Sum[f[k], {k, g[n - 1] + 1, g[n]}]; v[n_] := v[n] = (g[n] - g[n - 1])/s[n]; Table[Floor[v[n]], {n, 1, z}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 01 2013
EXTENSIONS
Extended by Ray Chandler, Jul 15 2015
STATUS
approved