login
A226981
Number of ways to cut an n X n square into squares with integer sides, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 8 elements.
5
0, 0, 0, 1, 45, 1194, 55777, 4471175, 669049507, 187616301623, 98793450008033, 97702667035688951
OFFSET
1,5
FORMULA
A226978(n) + A226979(n) + A226980(n) + A226981(n) = A224239(n).
1*A226978(n) + 2*A226979(n) + 4*A226980(n) + 8*A226981(n) = A045846(n).
EXAMPLE
For n=5, there are 45 dissections where the orbits under the symmetry group of the square, D4, have 8 elements.
For n=4, this is the only dissection:
---------
| | | |
| -----
| | |
----- |
| | | |
---------
| | | | |
---------
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(8)-a(12) from Ed Wynn, Apr 02 2014
STATUS
approved