OFFSET
4,3
COMMENTS
Let G = <X_1,X_2,...,X_n> be a filiform Lie algebra of dimension n over Z_2. Define the grading [X_i,X_j]=c_(i,j)X_(i+j), for i,j >=2 for some constants c_(i,j) in Z_2. How many such algebras there exist on dimension n? The sequence gives us up to a point this numbers starting with dimension four, that is, there exists only one such an algebra with dimension four, 1 again with dimension 5, 2 with dimension 6 and so forth.
LINKS
John Tsartsaflis, Table of n, a(n) for n = 4..254
Grant Cairns, Ana Hinić Galić, and Yuri Nikolayevsky, Totally geodesic subalgebras of nilpotent Lie algebras, arxiv.org 1112.1288
John Tsartsaflis, Maple implementation
M. Vergne, Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes, Bull. Soc. Math. France 98 (1970), 81-116.
CROSSREFS
KEYWORD
nonn
AUTHOR
John Tsartsaflis, Jun 24 2013
STATUS
approved