

A226911


Remainder modulo n, of the sum letters of English word for n (A073327: a=1,...z=26).


2



0, 0, 2, 0, 2, 4, 2, 1, 6, 9, 8, 3, 8, 6, 5, 0, 7, 1, 10, 7, 15, 11, 2, 23, 24, 3, 10, 16, 4, 10, 10, 30, 24, 24, 2, 8, 17, 35, 25, 4, 36, 16, 11, 12, 36, 44, 8, 37, 28, 16, 49, 20, 16, 18, 53, 6, 17, 57, 49, 37, 9, 31, 27, 29, 9, 17, 28, 10, 1, 40, 2, 24, 20, 22, 2, 10, 21, 3, 73, 74, 27, 50, 47, 50, 31, 40, 52, 35, 27, 87, 30, 53, 50, 53, 34, 43, 55, 38, 30
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

By definition, a(n)<n so iterated application of this function to any initial value n will create a strictly decreasing sequence ending in 0.


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000
M. Hasler in reply to E. Angelini, English number words modulo themselves, SeqFan list, Jun 21 2013


FORMULA

a(n) = A073327(n) mod n (where "mod" = remainder operator).
It appears that a(n) = A073327(n) for n > 279.  Robert Israel, Jun 12 2019


MAPLE

f:= proc(n) local S;
uses StringTools;
S:= Select(IsAlpha, convert(n, english));
convert(map(``, convert(S, bytes), 96), `+`) mod n
end proc:
map(f, [$1..100]); # Robert Israel, Jun 12 2019


PROG

(PARI) A226911 = n>A073327(n)%n


CROSSREFS

Cf. A073029, A119945, A072922, A075831, A152611, A052360.
Sequence in context: A164993 A305572 A223487 * A291956 A023987 A021498
Adjacent sequences: A226908 A226909 A226910 * A226912 A226913 A226914


KEYWORD

nonn,word,look


AUTHOR

Eric Angelini and M. F. Hasler, Jun 22 2013


STATUS

approved



