The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226908 L.g.f. L(x) = Sum_{n>=1} a(n)*x^n/n  satisfies:  exp(L(x)) = 1 + x*exp( Sum_{n>=1} a(n)*exp(L(x^n))*x^n/n ). 1
 1, 1, 4, 9, 26, 64, 183, 465, 1282, 3406, 9285, 25044, 68511, 186565, 511559, 1402689, 3858355, 10623592, 29311035, 80957054, 223924131, 619998655, 1718508780, 4767643956, 13238487101, 36788341279, 102306350929, 284699560049, 792766449887, 2208805757329, 6157550533161 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS FORMULA Logarithmic derivative of A226907. EXAMPLE G.f.: L(x) = x + x^2/2 + 4*x^3/3 + 9*x^4/4 + 26*x^5/5 + 64*x^6/6 +... where G(x) = exp(L(x)) satisfies G(x) = 1 + x*exp( x*G(x) + x^2*G(x^2)/2 + 4*x^3*G(x^3)/3 + 9*x^4*G(x^4)/4 + 26*x^5*G(x^5)/5 + 64*x^6*G(x^6)/6 +...+ a(n)*x^n*G(x^n)/n +... ) and equals the g.f. of A226907: G(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 48*x^7 + 113*x^8 + 276*x^9 + 677*x^10 +...+ A226907(n)*x^n +... PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*exp(sum(m=1, n, polcoeff(log(A+x*O(x^m)), m)*subst(A, x, x^m)*x^m)+x*O(x^n))); n*polcoeff(log(A), n)} for(n=1, 25, print1(a(n), ", ")) CROSSREFS Cf. A226907. Sequence in context: A329125 A020181 A216134 * A328657 A335983 A113682 Adjacent sequences:  A226905 A226906 A226907 * A226909 A226910 A226911 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 21 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 12:05 EST 2020. Contains 338923 sequences. (Running on oeis4.)