login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226897 a(n) is the total number of parts in the set of partitions of an n X n square lattice into squares, considering only the list of parts. 2
1, 5, 16, 59, 156, 529, 1351, 3988, 10236, 27746, 66763, 176783, 412450 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The sequence was derived from the documents in the Links section.  The documents are first specified in the Links section of A034295.

LINKS

Table of n, a(n) for n=1..13.

Jon E. Schoenfield, Table of solutions for n <= 12

Alois P. Heinz, More ways to divide an 11 X 11 square into sub-squares

Alois P. Heinz, List of different ways to divide a 13 X 13 square into sub-squares

EXAMPLE

For n = 3, the partitions are:

Square side 1 2 3 Total Parts

            9 0 0     9

            5 1 0     6

            0 0 1     1

Total                16

So a(3) = 16.

MAPLE

b:= proc(n, l) option remember; local i, k, s, t;

      if max(l[])>n then {} elif n=0 or l=[] then {0}

    elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))

    else for k do if l[k]=0 then break fi od; s:={};

         for i from k to nops(l) while l[i]=0 do s:=s union

             map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,

                 1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))

         od; s

      fi

    end:

a:= n-> add(coeff(add(j, j=b(n, [0$n])), x, i), i=1..n):

seq(a(n), n=1..9);  # Alois P. Heinz, Jun 21 2013

MATHEMATICA

$RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which [Max[l]>n, {}, n == 0 || l == {}, {0}, Min[l]>0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1, 1][[1, 1]]; s = {}; For[i = k, i <= Length[l] && l[[i]]== 0, i++, s = s ~Union~ Map[Function[{v}, v+x^(1+i-k)], b[n, Join[l[[1 ;; k-1]], Array[1+i-k&, i-k+1], l[[i+1 ;; -1]] ]]]]; s]]; a[n_] := Sum[Coefficient[Sum[j, {j, b[n, Array[0&, n]]}], x, i], {i, 1, n}]; Table[a[n], {n, 1, 9}] (* Jean-Fran├žois Alcover, May 29 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A034295, A226554.

Sequence in context: A281870 A116914 A047103 * A077235 A203232 A098347

Adjacent sequences:  A226894 A226895 A226896 * A226898 A226899 A226900

KEYWORD

nonn,hard,more

AUTHOR

Christopher Hunt Gribble, Jun 21 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 13:11 EDT 2019. Contains 324222 sequences. (Running on oeis4.)