This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226873 Number A(n,k) of n-length words w over a k-ary alphabet {a1,a2,...,ak} such that #(w,a1) >= #(w,a2) >= ... >= #(w,ak) >= 0, where #(w,x) counts the letters x in word w; square array A(n,k), n>=0, k>=0, read by antidiagonals. 27
 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 3, 4, 1, 0, 1, 1, 3, 10, 11, 1, 0, 1, 1, 3, 10, 23, 16, 1, 0, 1, 1, 3, 10, 47, 66, 42, 1, 0, 1, 1, 3, 10, 47, 126, 222, 64, 1, 0, 1, 1, 3, 10, 47, 246, 522, 561, 163, 1, 0, 1, 1, 3, 10, 47, 246, 882, 1821, 1647, 256, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 LINKS Alois P. Heinz, Antidiagonals n = 0..140, flattened FORMULA A(n,k) = Sum_{i=0..min(n,k)} A226874(n,i). EXAMPLE A(4,3) = 23: aaaa, aaab, aaba, aabb, aabc, aacb, abaa, abab, abac, abba, abca, acab, acba, baaa, baab, baac, baba, baca, bbaa, bcaa, caab, caba, cbaa. Square array A(n,k) begins:   1, 1,  1,   1,    1,    1,    1,     1, ...   0, 1,  1,   1,    1,    1,    1,     1, ...   0, 1,  3,   3,    3,    3,    3,     3, ...   0, 1,  4,  10,   10,   10,   10,    10, ...   0, 1, 11,  23,   47,   47,   47,    47, ...   0, 1, 16,  66,  126,  246,  246,   246, ...   0, 1, 42, 222,  522,  882, 1602,  1602, ...   0, 1, 64, 561, 1821, 3921, 6441, 11481, ... MAPLE b:= proc(n, i, t) option remember;       `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))     end: A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)): seq(seq(A(n, d-n), n=0..d), d=0..14); MATHEMATICA b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n-j, j, t-1]/j!, {j, i, n/t}]]; a[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *) CROSSREFS Columns k=0-10 give: A000007, A000012, A027306, A092255, A092429, A226875, A226876, A226877, A226878, A226879, A226880. Main diagonal gives: A005651. Cf. A131632, A182172. Sequence in context: A181434 A294018 A192003 * A293960 A062719 A305161 Adjacent sequences:  A226870 A226871 A226872 * A226874 A226875 A226876 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Jun 21 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 22:00 EDT 2018. Contains 316378 sequences. (Running on oeis4.)