This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226864 Expansion of phi(-x^3) *  f(-x^4) in powers of x where phi(), f() are Ramanujan theta functions. 1
 1, 0, 0, -2, -1, 0, 0, 2, -1, 0, 0, 2, 2, 0, 0, 0, -2, 0, 0, 0, -1, 0, 0, -2, 0, 0, 0, -2, 1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 2, -2, 0, 0, -2, -2, 0, 0, 0, -3, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 2, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(-1/6) * eta(q^3)^2 * eta(q^4) / eta(q^6) in powers of q. Euler transform of period 12 sequence [ 0, 0, -2, -1, 0, -1, 0, -1, -2, 0, 0, -2, ...]. G.f.: (Sum_{k in Z} (-1)^k * x^(3*k^2)) * Product_{k>0} (1 - x^(4*k)). a(n) = (-1)^n * A226862(n). a(4*n + 1) = a(4*n + 2) = 0. a(4*n) = A226289(n). EXAMPLE 1 - 2*x^3 - x^4 + 2*x^7 - x^8 + 2*x^11 + 2*x^12 - 2*x^16 - x^20 - 2*x^23 + ... q - 2*q^19 - q^25 + 2*q^43 - q^49 + 2*q^67 + 2*q^73 - 2*q^97 - q^121 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^3] QPochhammer[ q^4], {q, 0, n}] PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^2 * eta(x^4 + A) / eta(x^6 + A), n))} CROSSREFS Cf. A226289, A226862. Sequence in context: A302236 A262929 A226862 * A257399 A168313 A072575 Adjacent sequences:  A226861 A226862 A226863 * A226865 A226866 A226867 KEYWORD sign AUTHOR Michael Somos, Jun 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 04:50 EDT 2019. Contains 323539 sequences. (Running on oeis4.)