login
A226772
Triangular numbers obtained as the concatenation of n and 2n.
5
36, 1326, 2346, 3570, 125250, 223446, 12502500, 22234446, 1250025000, 2066441328, 2222344446, 2383847676, 3673573470, 125000250000, 222223444446, 5794481158896, 12500002500000, 12857132571426, 22222234444446, 49293309858660, 804878916097578, 933618918672378, 971908519438170
OFFSET
1,1
COMMENTS
Includes 125*10^(2*k+1)+25*10^k and (10^k+2)*(1+(10^k-1)*2/9) for k >= 1. - Robert Israel, Nov 09 2020
LINKS
EXAMPLE
If n=23, 2n=46, n//2n = 2346 = 68*69/2, a triangular number.
MAPLE
F:= proc(d) local D, R, M, m, w, x, x1, x2;
R:= NULL;
M:= 10^d/2+1;
D:= numtheory:-divisors(M);
for m in D do if igcd(m, M/m)=1 then
for w in [chrem([-1, 1], [8*m, M/m]), chrem([1, -1], [8*m, M/m])] do
x:= (w^2-1)/8;
x1:= x mod 10^d;
x2:= floor(x/10^d);
if x1 = 2*x2 and x1 >= 10^(d-1) then R:= R, x fi
od fi od;
op(sort([R]))
end proc:
36, seq(F(d), d=2..10); # Robert Israel, Nov 09 2020
MATHEMATICA
TriangularQ[n_] := IntegerQ[Sqrt[1 + 8*n]]; t = {}; Do[s = FromDigits[Join[IntegerDigits[n], IntegerDigits[2*n]]]; If[TriangularQ[s], AppendTo[t, s]], {n, 100000}]; t (* T. D. Noe, Jun 18 2013 *)
PROG
(PARI)
concatint(a, b)=eval(concat(Str(a), Str(b)))
istriang(x)=issquare(8*x+1)
{for(n=1, 10^5, a=concatint(n, 2*n); if(istriang(a), print(a)))}
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antonio Roldán, Jun 18 2013
STATUS
approved