%I #4 Jun 17 2013 08:40:09
%S 1,1,1,1,2,2,3,3,5,5,7,7,11,11,14,14,20,20,26,27,37,37,46,47,62,63,77,
%T 80,101,103,125,130,160,164,194,203,245,253,296,311,368,381,440,463,
%U 540,562,642,677,780,814,922,973,1107,1157,1302,1375,1552,1626
%N Number of partitions of n into Platonic numbers, cf. A053012.
%e First Platonic numbers: 1, 4, 6, 8, 10, 12, 19, 20, ...
%e a(10) = #{10, 8+1+1, 6+4, 6+1+1+1+1, 4+4+1+1, 4+6x1, 10x1} = 7;
%e a(11) = #{10+1, 8+1+1+1, 6+4+1, 6+5x1, 4+4+1+1+1, 4+7x1, 11x1} = 7;
%e a(12) = #{12, 10+1+1, 8+4, 8+1+1+1+1, 6+6, 6+4+1+1, 6+6x1, 4+4+4, 4+4+1+1+1+1, 4+8x1, 12x1} = 11;
%e a(13) = #{12+1, 10+1+1+1, 8+4+1, 8+5x1, 6+6+1, 6+4+1+1+1, 6+7x1, 4+4+4+1, 4+4+5x1, 4+9x1, 13x1} = 11;
%e a(14) = #{12+1+1, 10+4, 10+1+1+1+1, 8+6, 8+4+1+1, 8+6x1, 6+6+1+1, 6+4+4, 6+4+1+1+1+1, 6+8x1, 4+4+4+1+1, 4+4+6x1, 4+10x1, 14x1} = 14;
%e a(15) = #{12+1+1+1, 10+4+1, 10+5x1, 8+6+1, 8+4+1+1+1, 8+7x1, 6+6+1+1+1, 6+4+4+1, 6+4+5x1, 6+9x1, 4+4+4+1+1+1, 4+4+7x1, 4+11x1, 15x1} = 14;
%e a(16) = #{12+4, 12+1+1+1+1, 10+6, 10+4+1+1, 10+6x1, 8+8, 8+6+1+1, 8+4+4, 8+4+1+1+1+1, 8+8x1, 6+6+4, 6+6+1+1+1+1, 6+4+4+1+1, 6+4+6x1, 6+10x1, 4+4+4+4, 4+4+4+1+1+1+1, 4+4+8x1, 4+12x1, 16x1} = 20.
%o (Haskell)
%o a226748 = p a053012_list where
%o p _ 0 = 1
%o p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
%Y Cf. A003108, A068980, A226749.
%K nonn
%O 0,5
%A _Reinhard Zumkeller_, Jun 17 2013