login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226728 G.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ). 4
1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 3, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -4, 0, 0, 0, 4, 0, 0, 0, -3, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, -6, 0, 0, 0, 7, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, -9, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,42

LINKS

Table of n, a(n) for n=0..102.

FORMULA

G.f.: 1/(1+q/(1-q/(1+q^3/(1-q^3/(1+q^5/(1-q^5/(1+q^7/(1-q^7/(1+ ... ))))))))).

G.f.: 1/W(0), where W(k)= 1 + x^(2*k+1)/(1 - x^(2*k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013

PROG

(PARI) N = 166;  q = 'q + O('q^N);

G(k) = if(k>N, 1, 1 + q^(k+1) / (1 - q^(k+1) / G(k+2) ) );

gf = 1 / G(0);

Vec(gf)

CROSSREFS

Cf. A049346 (g.f.: 1 - 1/G(0), G(k)= 1 + q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).

Cf. A226729 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).

Cf. A006958 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).

Cf. A227309 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).

Sequence in context: A174712 A127647 A325458 * A244140 A091227 A300715

Adjacent sequences:  A226725 A226726 A226727 * A226729 A226730 A226731

KEYWORD

sign

AUTHOR

Joerg Arndt, Jun 29 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 13 20:38 EDT 2019. Contains 327981 sequences. (Running on oeis4.)