login
A226622
Expansion of phi(x^2) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions.
4
1, 1, 4, 5, 9, 13, 21, 29, 46, 62, 90, 122, 171, 227, 311, 408, 545, 709, 933, 1198, 1555, 1980, 2536, 3205, 4063, 5092, 6400, 7966, 9928, 12281, 15198, 18684, 22979, 28097, 34346, 41789, 50813, 61527, 74453, 89757, 108114, 129809, 155704, 186221, 222503
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/24) * eta(q^4)^5 / (eta(q) * eta(q^2)^2 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ 1, 3, 1, -2, 1, 3, 1, 0, ...].
G.f.: (Sum_{k in Z} x^(2*k^2)) / (Product_{k>0} (1 - x^k)).
a(n) = A022597(2*n) = A073252(2*n).
G.f. A(x) satisfies A(x^2) = ( chi(x)^2 + chi(-x)^2 )/2, where chi(x) = Product_{k >= 0} 1 + x^(2*k+1) is the g.f. of A000700. Cf. A226635. - Peter Bala, Sep 29 2023
EXAMPLE
1 + x + 4*x^2 + 5*x^3 + 9*x^4 + 13*x^5 + 21*x^6 + 29*x^7 + 46*x^8 + 62*x^9 + ...
1/q + q^23 + 4*q^47 + 5*q^71 + 9*q^95 + 13*q^119 + 21*q^143 + 29*q^167 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] / QPochhammer[ q], {q, 0, n}]
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 / (eta(x + A) * eta(x^2 + A)^2 * eta(x^8 + A)^2), n))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Aug 31 2013
STATUS
approved