This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226602 Number of ordered triples (i,j,k) with i*j*k = n, i,j,k >= 0 and gcd(i,j,k) <= 1. 4
 1, 1, 3, 3, 6, 3, 9, 3, 9, 6, 9, 3, 18, 3, 9, 9, 12, 3, 18, 3, 18, 9, 9, 3, 27, 6, 9, 9, 18, 3, 27, 3, 15, 9, 9, 9, 36, 3, 9, 9, 27, 3, 27, 3, 18, 18, 9, 3, 36, 6, 18, 9, 18, 3, 27, 9, 27, 9, 9, 3, 54, 3, 9, 18, 18, 9, 27, 3, 18, 9, 27, 3, 54, 3, 9, 18, 18 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Note that gcd(0,m) = m for any m. a(n) is the number of cubefree divisors summed over the divisors of n. In other words, a(n) = Sum_{d|n} A073184(d). - Geoffrey Critzer, Mar 20 2015 LINKS Robert Price and Alois P. Heinz, Table of n, a(n) for n = 0..20000 (first 101 terms from Robert Price) FORMULA From Geoffrey Critzer, Mar 20 2015: (Start) If n = p_1^e_1*p_2^e_2*...*p_r^e_r then a(n) = Product_{i=1..r} 3*e_i. Dirichlet g.f.: zeta(s)^3/zeta(3*s). (End) From Werner Schulte, May 13 2018: (Start) Multiplicative with a(p^e) = 3*e, p prime and e>0. Dirichlet inverse b(n), n>0, is multiplicative with b(1) = 1, and for p prime and e>0: b(p^e)=0 if e mod 3 = 0 otherwise b(p^e)=3*(-1)^(e mod 3). Dirichlet convolution with A007427(n) yields A212793(n). Dirichlet convolution with A008836(n) yields A092520(n). Equals Dirichlet convolution of A034444(n) and A056624(n). Equals Dirichlet convolution of A000005(n) and A212793(n). (End) Sum_{k=1..n} a(k) ~ n/(2*Zeta(3)) * (log(n)^2 + 2*log(n) * (-1 + 3*gamma - 3*Zeta'(3)/Zeta(3)) + 2 + 6*gamma^2 - 6*sg1 + 6*Zeta'(3)/Zeta(3) + 18*Zeta'(3)^2/Zeta(3)^2 - 6*gamma*(1 + 3*Zeta'(3)/Zeta(3)) - 9*Zeta''(3)/Zeta(3)), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Feb 07 2019 MAPLE with(numtheory): b:= proc(n, t, g) option remember; `if`(t=0,       `if`(igcd(n, g)=1, 1, 0), add(b(n/d, t-1,       igcd(g, d)), d=divisors(n)))     end: a:= n-> `if`(n=0, 1, b(n, 2, 0)): seq(a(n), n=0..100);  # Alois P. Heinz, Mar 20 2015 MATHEMATICA f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k == n && GCD[i, j, k] <= 1, {i, j, k}], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; [Table[f[n], {n, 0, 100}] CROSSREFS Cf. A000005, A007427, A008836, A034444, A056624, A073184, A092520, A100450, A212793, A226357, A226359. Sequence in context: A110634 A151787 A113397 * A007425 A260152 A130695 Adjacent sequences:  A226599 A226600 A226601 * A226603 A226604 A226605 KEYWORD nonn,mult,changed AUTHOR Robert Price, Jun 13 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 19 21:59 EST 2019. Contains 320328 sequences. (Running on oeis4.)