

A226592


Population of dying rabbits: Rabbit pairs are not fertile during their first 5 months of life, but thereafter give birth to 2 new male/female pairs at the end of every 3 month. Rabbits will die after 12 months from birth.


2



1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 9, 11, 10, 18, 18, 26, 38, 36, 60, 68, 82, 130, 130, 192, 248, 272, 432, 472, 620, 876, 940, 1412, 1700, 2044, 3000, 3320, 4608, 6016, 6912, 10064, 11792, 15184, 20856, 23864, 33432, 41616, 50832, 71056, 83344, 111056, 145072, 172976
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

The HoggattLind article shows that the birth polynomial is B(x) = 2*x^5+2*x^8+2*x^11, that the death polynomial is D(x)=x^12, and the total number of rabbit pairs, a(n), has the generating function T(x) = (1D(x)) / ((1x)*(1B(x)) = (1x^12) / ((1x)*(12x^52x^82x^11)) = (x+1) *(x^2+1) *(x^2+x+1) *(x^2x+1) *(x^4x^2+1) / (12x^52x^82x^11).  R. J. Mathar, Jul 04 2013


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..2000
V. E. Hoggatt, Jr. and D. A. Lind, The dying rabbit problem, Fib. Quart. 7 (1969), 482487.
Index to sequences related to dying rabbits
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,2,0,0,2,0,0,2).


FORMULA

For 0 <= n <= 4, a(n)=1;
for 5 <= n <= 11, a(n) = a(n3) + 2*a(n5);
for 12 <= n, a(n) = 2*( a(n5) + a(n8) + a(n11) ).
G.f: 1x*(1 +x +x^2 +x^3 +3*x^4 +x^5 +x^6 +3*x^7 +x^8 +x^9 +3*x^10) / ( 1 +2*x^5 +2*x^8 +2*x^11 ).  R. J. Mathar, Jul 04 2013


MATHEMATICA

CoefficientList[Series[1  x (1 + x + x^2 + x^3 + 3 x^4 + x^5 + x^6 + 3 x^7 + x^8 + x^9 + 3 x^10)/(1 + 2 x^5 + 2 x^8 + 2 x^11), {x, 0, 60}], x] (* Vincenzo Librandi, Feb 17 2017 *)


PROG

(MAGMA) I:=[1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 9, 11]; [n le 12 select I[n] else 2*Self(n5)+2*Self(n8)+2*Self(n11): n in [1..50]]; // Vincenzo Librandi, Feb 17 2017


CROSSREFS

Sequence in context: A077886 A096015 A046702 * A133683 A182998 A117900
Adjacent sequences: A226589 A226590 A226591 * A226593 A226594 A226595


KEYWORD

nonn,easy,less


AUTHOR

Lin YinChen, Jun 13 2013


STATUS

approved



