login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226588 a(n) = c({1}^n), the Cantor tuple function c applied to an n-tuple of 1's. 3
0, 1, 4, 16, 154, 12091, 73114279, 2672849006516341, 3572060905817699556013859788654, 6379809557435582128907282471160505774257452233828787563248841 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..13

Wikipedia, Pairing function

FORMULA

a(n) = c({1}^n) with c() = 0, c(n) = n, c(n,k) = (n+k)*(n+k+1)/2+k, c(n_1,...,n_{k-1},n_k) = c(c(n_1,...,n_{k-1}),n_k) for k>2.

a(n) = (a(n-1)+1)*(a(n-1)+2)/2+1 for n>1, a(n) = n for n<=1.

EXAMPLE

a(2) = c(1,1) = 2*3/2+1 = 4.

a(3) = c(1,1,1) = c(c(1,1),1) = c(4,1) = 5*6/2+1 = 16.

MAPLE

a:= proc(n) a(n):= `if`(n<2, n, (g-> g*(g+1)/2)(a(n-1)+1)+1) end:

seq(a(n), n=0..10);

MATHEMATICA

a[n_] := a[n] = If[n<2, n, Function[g, g*(g+1)/2][a[n-1]+1]+1];

Table[a[n], {n, 0, 10}] (* Jean-Fran├žois Alcover, Jun 01 2018, from Maple *)

CROSSREFS

Cf. A226597, A226598.

Sequence in context: A005749 A005739 A279887 * A318641 A005741 A033911

Adjacent sequences:  A226585 A226586 A226587 * A226589 A226590 A226591

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Jun 12 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 13:03 EST 2020. Contains 332044 sequences. (Running on oeis4.)