The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226561 a(n) = Sum_{d|n} d^n * phi(d), where phi(n) is the Euler totient function A000010(n). 11
 1, 5, 55, 529, 12501, 94835, 4941259, 67240193, 2324562301, 40039063525, 2853116706111, 35668789979107, 3634501279107037, 66676110291801575, 3503151245145885315, 147575078498173255681, 13235844190181388226833, 236079349222711695887225, 35611553801885644604231623 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Compare formula to the identity: Sum_{d|n} phi(d) = n. LINKS Robert Israel, Table of n, a(n) for n = 1..385 FORMULA Logarithmic derivative of A226560. a(n) = Sum_{d|n} d * phi(d^n). a(n) = Sum_{d|n} phi(d^(n+1)). a(n) = Sum_{d|n} phi(d^(n+2))/d. a(n) = Sum_{d|n} d^(n-k+1) * phi(d^k) for k >= 1. G.f.: Sum_{k>=1} phi(k)*(k*x)^k/(1 - (k*x)^k). - Ilya Gutkovskiy, Nov 06 2018 a(n) = Sum_{k=1..n} (n/gcd(k,n))^n. - Seiichi Manyama, Mar 11 2021 EXAMPLE L.g.f.: L(x) = x + 5*x^2/2 + 55*x^3/3 + 529*x^4/4 + 12501*x^5/5 + 94835*x^6/6 + ... where exp(L(x)) = 1 + x + 3*x^2 + 21*x^3 + 155*x^4 + 2691*x^5 + 18924*x^6 + 732230*x^7 + 9223166*x^8 + ... + A226560(n)*x^n + ... MAPLE f:= n -> add(d^n * numtheory:-phi(d), d = numtheory:-divisors(n)): map(f, [\$1..40]); # Robert Israel, Jun 16 2017 MATHEMATICA Table[DivisorSum[n, #*EulerPhi[#^n]  &], {n, 1, 30}]  (* or *) With[{nmax = 30}, Rest[CoefficientList[Series[Sum[EulerPhi[k]*(k*x)^k/(1 - (k*x)^k), {k, 1, 2*nmax}], {x, 0, nmax}], x]]]  (* G. C. Greubel, Nov 07 2018 *) PROG (PARI) {a(n)=sumdiv(n, d, d^n*eulerphi(d))} for(n=1, 30, print1(a(n), ", ")) (PARI) a(n) = sum(k=1, n, (n/gcd(k, n))^n); \\ Seiichi Manyama, Mar 11 2021 (MAGMA) m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  (&+[EulerPhi(k)*(k*x)^k/(1-(k*x)^k): k in [1..2*m]]) )); // G. C. Greubel, Nov 07 2018 (Python) from sympy import totient, divisors def A226561(n):     return sum(totient(d)*d**n for d in divisors(n, generator=True)) # Chai Wah Wu, Feb 15 2020 CROSSREFS Cf. A226560, A226459, A000010, A321349, A332517. Sequence in context: A045640 A043040 A342420 * A062183 A002279 A119292 Adjacent sequences:  A226558 A226559 A226560 * A226562 A226563 A226564 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 18:25 EDT 2021. Contains 342951 sequences. (Running on oeis4.)