This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226545 Number A(n,k) of squares in all tilings of a k X n rectangle using integer sided square tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals. 12
 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 5, 3, 0, 0, 4, 12, 12, 4, 0, 0, 5, 25, 34, 25, 5, 0, 0, 6, 50, 98, 98, 50, 6, 0, 0, 7, 96, 256, 386, 256, 96, 7, 0, 0, 8, 180, 654, 1402, 1402, 654, 180, 8, 0, 0, 9, 331, 1625, 4938, 6940, 4938, 1625, 331, 9, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS Alois P. Heinz, Antidiagonals n = 0..30, flattened EXAMPLE A(3,3) = 1 + 6 + 6 + 6 + 6 + 9 = 34:   ._____.  ._____.  ._____.  ._____.  ._____.  ._____.   |     |  |   |_|  |_|   |  |_|_|_|  |_|_|_|  |_|_|_|   |     |  |___|_|  |_|___|  |_|   |  |   |_|  |_|_|_|   |_____|  |_|_|_|  |_|_|_|  |_|___|  |___|_|  |_|_|_| Square array A(n,k) begins:   0, 0,   0,    0,     0,      0,       0,        0, ...   0, 1,   2,    3,     4,      5,       6,        7, ...   0, 2,   5,   12,    25,     50,      96,      180, ...   0, 3,  12,   34,    98,    256,     654,     1625, ...   0, 4,  25,   98,   386,   1402,    4938,    16936, ...   0, 5,  50,  256,  1402,   6940,   33502,   157279, ...   0, 6,  96,  654,  4938,  33502,  221672,  1426734, ...   0, 7, 180, 1625, 16936, 157279, 1426734, 12582472, ... MAPLE b:= proc(n, l) option remember; local i, k, s, t;       if max(l[])>n then [0, 0] elif n=0 or l=[] then [1, 0]     elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))     else for k do if l[k]=0 then break fi od; s:=[0\$2];          for i from k to nops(l) while l[i]=0 do s:=s+(h->h+[0, h[1]])            (b(n, [l[j]\$j=1..k-1, 1+i-k\$j=k..i, l[j]\$j=i+1..nops(l)]))          od; s       fi     end: A:= (n, k)-> `if`(n>=k, b(n, [0\$k]), b(k, [0\$n]))[2]: seq(seq(A(n, d-n), n=0..d), d=0..14); MATHEMATICA b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, {0, 0}, n == 0 || l == {}, {1, 0}, Min[l] > 0, t=Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s={0, 0}; For[i=k, i <= Length[l] && l[[i]] == 0, i++, s = s + Function[h, h+{0, h[[1]]}][b[n, Join[l[[1 ;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1 ;; -1]]]]] ]; s]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]][[2]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *) CROSSREFS Columns (or rows) k=0-10 give: A000004, A001477, A067331(n-1) for n>0, A226546, A226547, A226548, A226549, A226550, A226551, A226552, A226553. Main diagonal gives A226554. Cf. A113881, A219924. Sequence in context: A271916 A327031 A014473 * A271917 A185651 A265080 Adjacent sequences:  A226542 A226543 A226544 * A226546 A226547 A226548 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Jun 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 22:20 EDT 2019. Contains 327252 sequences. (Running on oeis4.)