This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226535 Expansion of b(-q) in powers of q where b() is a cubic AGM theta function. 37

%I

%S 1,3,0,-6,-3,0,0,6,0,-6,0,0,6,6,0,0,-3,0,0,6,0,-12,0,0,0,3,0,-6,-6,0,

%T 0,6,0,0,0,0,6,6,0,-12,0,0,0,6,0,0,0,0,6,9,0,0,-6,0,0,0,0,-12,0,0,0,6,

%U 0,-12,-3,0,0,6,0,0,0,0,0,6,0,-6,-6,0,0,6,0

%N Expansion of b(-q) in powers of q where b() is a cubic AGM theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Zagier (2009) denotes the g.f. as f(z) in Case B which is associated with F(t) the g.f. of A006077.

%D D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

%H Seiichi Manyama, <a href="/A226535/b226535.txt">Table of n, a(n) for n = 0..10000</a>

%H M. Somos, <a href="http://cis.csuohio.edu/~somos/multiq.pdf">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%H D. Zagier, <a href="http://people.mpim-bonn.mpg.de/zagier/files/tex/AperylikeRecEqs/fulltext.pdf">Integral solutions of Apery-like recurrence equations</a>.

%F Expansion of f(q)^3 / f(q^3) in powers of q where f() is a Ramanujan theta function.

%F Expansion of 2*b(q^4) - b(q) = b(q^2)^3 / (b(q) * b(q^4)) in powers of q where b() is a cubic AGM theta function.

%F Expansion of eta(q^2)^9 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6))^3 in powers of q.

%F Euler transform of period 12 sequence [ 3, -6, 2, -3, 3, -4, 3, -3, 2, -6, 3, -2, ...].

%F Moebius transform is period 36 sequence [ 3, -3, -9, -3, -3, 9, 3, 3, 0, 3, -3, 9, 3, -3, 9, -3, -3, 0, 3, 3, -9, 3, -3, -9, 3, -3, 0, -3, -3, -9, 3, 3, 9, 3, -3, 0, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 972^(1/2) (t / i) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A227696.

%F G.f.: f(q) = F(t(q)) where F() is the g.f. of A006077 and t() is the g.f. of A227454.

%F G.f.: Product_{k>0} (1 - (-x)^k)^3 / (1 - (-x)^(3*k)).

%F a(3*n + 2) = a(4*n + 2) = 0.

%F a(n) = (-1)^n * A005928(n) = (-1)^(((n+1) mod 6 ) > 3) * A113062(n). A113062(n) = |a(n)|.

%F a(3*n) = A180318(n). a(2*n + 1) = 3 * A123530(n). a(4*n) = A005928(n).

%e G.f. = 1 + 3*q - 6*q^3 - 3*q^4 + 6*q^7 - 6*q^9 + 6*q^12 + 6*q^13 - 3*q^16 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ -q]^3 / QPochhammer[ -q^3], {q, 0, n}]

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^9 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A))^3, n))}

%Y Cf. A005928, A006077, A113062, A180318, A227454, A227696.

%Y The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

%K sign

%O 0,2

%A _Michael Somos_, Sep 22 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 15:52 EST 2019. Contains 320399 sequences. (Running on oeis4.)