OFFSET
0,15
COMMENTS
Comment from Emeric Deutsch, Aug 21 2016 (Start):
Given an increasing sequence of positive integers S = {a0, a1, a2, ... }, let
F(x) = x^{a0} + x^{a1} + x^{a2} + ... .
Then the g. f. for the number of palindromic compositions of n with parts in S is (see Hoggatt and Bicknell, Fibonacci Quarterly, 13(4), 1975, 350 - 356):
(1 + F(x))/(1 - F(x^2))
Playing with this, I have found easily that
1. number of palindromic compositions of n into {3,4,5,...} = A226916(n+4);
2. number of palindromic compositions of n into {1,4,7,10,13,...} = A226916(n+6);
3. number of palindromic compositions of n into {1,4} = A226517(n+10);
4. number of palindromic compositions of n into {1,5} = A226516(n+11).
(End)
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
V. E. Hogatt, M. Bicknell, Palindromic Compositions, Fib. Quart. 13(4) (1975) 350-356
N. J. A. Sloane, 2178 And All That, Fib. Quart., 52 (2014), 99-120.
Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,0,0,0,1).
FORMULA
G.f.: x^6*(1+x)*(1-x+x^4)/(1-x^2-x^8).
a(n) = a(n-2) + a(n-8) for n>11, with initial values a(0)-a(11) = 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1. [Bruno Berselli, Jun 17 2013]
MAPLE
f:=proc(n) option remember;
if
n <= 5 then 0
elif n=6 then 1
elif n <= 9 then 0
elif n <= 11 then 1
else f(n-2)+f(n-8)
fi;
end;
[seq(f(n), n=0..120)];
MATHEMATICA
CoefficientList[Series[x^6 (1 - x^2 + x^4 + x^5) / (1 - x^2 - x^8), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 18 2013 *)
LinearRecurrence[{0, 1, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1}, 80] (* Harvey P. Dale, Aug 23 2019 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
N. J. A. Sloane, Jun 16 2013
STATUS
approved